Program Outcomes	Ph.D. (Physics) Program
PO1.	Scientific knowledge: Apply the knowledge of physics fundamentals to the solution of specific research problems.
PO2.	Problem analysis: Identify, formulate, research literature, and analyze research related problems using basic principles of physics.
PO3.	Conduct investigations of research problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO4.	Modern tool usage: Apply appropriate techniques, resources, and modern scientific & engineering techniques to complex research related physical activities with an understanding of the limitations.
PO5.	Research Proficiency: Apply various modern techniques for research specific activities/experiments and analysis purpose
Program Specific Outcomes	PSOs of Ph.D. (Physics) Program
PO1.	Understand the concepts of research fundamentals and methodology
PO2.	Perform procedures/experiments as per standards
PO3.	Apply the scientist knowledge for the analysis and interpretation of the simulated/experimental outcomes
PO4	Skill of writing scientific reports and articles as per international standards

Course Outcomes	COs of the course "PHY-601(1)-Advanced Nano Physics" Described general understanding of nanoscience and nanotechnology, Fundamental behavior of 0-D, 1-D, 2-D, and 3-D materials, Quantum Wells, Wires, and Dots, Carbon Nano Structures and related topics.	
	CO1: Develop an understanding of popular and scientific prospective of nanotechnology, classification of nanomaterials, density of states for 0-D, 1-D, 2-D, and 3-D materials, Quantum confinement, superlattices.	
	CO2: Enumerate and explain structure determination by X-ray diffraction, reciprocal lattice, structure factor, size effect on X- ray diffraction, magnetoresistance etc.	
	CO3: Explain and understand synthesis techniques for the preparation of nanoparticles; bottom up approach: sol-gel synthesis, hydrothermal growth, thin film growth (i.e. CVD, PVD).	
	CO4: Develop an understanding sze effect on shape of materials, size effect on electronic properties- magic number, grain boundary effect, semiconductor nanoparticles; Plasmonic nanoparticles,	
	CO5: Explain and understand some special nanomaterials: Carbon nano Structures: Fullerenes, C60, C80 SWNT and MWNT; nanocomposites: Metal-Metal nanocomposites, Polymer-Metal nanocomposites, ceramic nanocomposites.	
Credits	03 Theory periods of one hour per week over a semester	

Course Outcomes	 COs of the course "PHY-602- Advanced Condensed Matter Physics" Describe general understanding of advancement of condensed matter physics and related problems. CO1: Linear and nonlinear dielectric properties of Materials: dielectric constants and Polarization mechanisms, linear dielectric materials etc. 	
	CO2: Enumerate and explain theory of magnetism: dia- and para- Ferro-, ferri- and anti-ferromagnetism magnetism in materials, Pauli paramagnetism, and Exchange interaction. Heisenberg Hamiltonian- mean field theory;.	
	CO3: Explain and understand optical properties and optical transition; optical Processes and Excitons.	
	CO4: Develop an understanding of many electron theory, Hartree- Fock theory, Second quantization formalism; Interactions of Electrons and Phonons with Photons	
	CO5: Develop an understanding of Basic concepts in point defects, line defects, planner defects and dislocations in solids.	
Credits	03 Theory and 01 Tutorial periods of one hour per week over a semester	

Course Outcomes	general of elect	the course "PHY-603- Advanced Quantum Mechanics" describe understanding of special theory of relativity, covariant formulation crodynamics, radiation from accelerated charges, general theory of ty and related problems.
	CO1:	Develop an understanding of solutions of Schrödinger Equation for 1-D and 3-D square wells and potential barriers, H-atom, harmonic oscillator in matrix mechanics etc.
	CO2:	Enumerate and explain approximation methods: Non-degenerate and degenerate perturbation theory and application to anharmonic oscillator, variational method with application to ground state of harmonic oscillator and hydrogen atom.
	CO3:	Explain and understand time dependent perturbation: General expression for the probability of transition from one state to another, Fermi's golden rule and its application to radiative transition in atoms.
	CO4:	Develop an understanding of relativistic quantum mechanics: The Klein-Gordon equation. The Dirac equation. Dirac matrices, spinors.
	CO5:	Explain and understand identical Particles: Symmetric and antisymmetric wave functions: Bosons and Fermions. Summarization postulates,
	CO6:	Explain and understand Quantum Field Theory.
Credits	03 Theo	ory and 01 Tutorial periods of one hour per week over a semester

Course Outcomes	COs of the course "PHY-608- Renewable Energy Sources	and	
	Technologies" Describe general understanding of energy sources, solar energy, hydrogen energy, wind energy, wave energy and oceanic thermal		
	energy conversion and related topics.		
	CO1: Explain and enumerate production alternatives and reserves	of	
	energy sources in the world and in India; need of renewable		
	energy sources, energy security and energy conservation, energy		
	and its environmental impacts, distributed generation.		
	CO2: Develop an understanding of solar thermal and solar photovo	ltaic	
	technologies and their applications.		
	CO3: Explain and understand the hydrogen production techniques,		
	importance of hydrogen energy as per environmental concern	1,	
	storage techniques and safty issues.		
	CO4: Develop an understanding of wind energy, wave energy and		
	OTEC and their implementation criteria.		
Credits	3 Theory and 01 Tutorial periods of one hour per week over a semes	ter	

Course Outcomes	COs of the course "PHY-604- Advanced Materials Science" Describe	
	general understanding crystal structure of variousmaterials, chemical	
	bonding in solids, synthesis and characterization techniques of materials	
	and related topics.	
	CO1: Develop an understanding of crystalline and non-crystalline materials; classification of crystals; bravais lattices; symmetry in crystals, some special crystal structure.	
	CO2: Enumerate and explain bonding in materials; phase transitions, magnetic, dielectric materials, high Tc superconductors, nanomaterials, alloys, semiconductors, polymers, ceramics, composites, solar energy materials, imperfection in a crystal.	
	CO3: Explain and understand single crystal growth, chemical route synthesis, thin film preparation techniques; synthesis of nanomaterials: top down and bottom up approaches of synthesis of nano-structured materials, advanced materials in 3D printing.	
	CO4: Develop an understanding of basic principal and application of XRD, Raman spectroscopy, XPS, STM, AFM, TEM, SEM.	
	CO5: Develop an understanding of basic principal and application of IR, UV-Visible, Dielectric spectroscopy, VSM, SQUID.	
Credits	03 Theory and 01 Tutorial periods of one hour per week over a semester	

Course Outcomes	COs of the course "PHY-605- Advanced Computational Physics" describe general understanding of various advances developed in Computational		
	Physics.		
	CO1: Develop an understanding of concepts of deterministic and stochastic simulation methods, limitations of simulational physics.		
	CO2: Enumerate and explain Monte Carlo Method, Random walk on one, two and three dimensional lattices, self-avoiding walk, micro-canonical ensemble, canonical ensemble, classical ideal gas, ising model, grand canonical ensemble.		
	CO3: Explain and understand Molecular Dynamics.		
	CO4: Develop an understanding of symbolic computing systems.		
	CO5: Explain and understand computing hardware basics: memory and CPU, components.		
Credits	03 Theory and 01 Tutorial periods of one hour per week over a semester		

Ph.D. (Physics) Program Program Outcomes, Program Specific Outcomes, Course Outcomes

Course Outcomes	COs of the course "PHY-606- Advanced Optoelectronics" describe general understanding of basic principles of advance optoelectronics and related devices applications.		
	CO1:	Develop an understanding of electron-hole recombination process and band gap engineering in optical materials.	
	CO2:	Enumerate and explain principle of laser actions: spontaneous and stimulated emission and absorption, the condition for the laser action.	
	CO3:	Explain and understand working of semiconductor injection laser: efficiency, stripe geometry LED materials, commercial LED materials.	
	CO4:	Develop an understanding of basic electronic devices: p-n junction their application in solar cells and light emitting diodes, optical communications, fundamental principles of photonics and light-matter interactions.	
	CO5:	Explain and understand about waveguides switches and modulators and other devices of integrated optics.	
Credits	03 The	ory and 01 Tutorial periods of one hour per week over a semester	

Course Outcomes	Describ	the course "PHY-610- Advanced Materials and Energy Devices" e general understanding of advanced materials and their ions including energy devices. Develop an understanding of theories and physical mechanisms of advanced materials, concept of Fermi-energy, work function and electron affinity.
	CO2:	Enumerate and explain interaction between materials of different chemical origin; organic and inorganic species; motifs and functions, bio-functional structure, carbon based materials such a ACs, graphene, CNTs, MWNTs.
	CO3:	Explain and understand concept of energy production and storage; Emerging trends in LEDs and optoelectronic devices; Electrochemical capacitors and supercapacitors.
	CO4:	Develop an understanding of magneto-hydrodynamics and magnetic fluids; rechargeable batteries; solar batteries and solar charger; solar cells etc.
	CO5:	Develop an understanding of hydrogen production techniques and storage using hybrid materials, hydride batteries and fuel cells.
Credits	03 Theo	ory and 01 Tutorial periods of one hour per week over a semester

Course Outcomes		the course "PHY-609- Research Methodology" Describe general anding of some basic concepts of research and its methodologies.
	CO1:	Develop an understanding of need, importance and impact of research, types of research, research process.
	CO2:	Learn about synopsis writing, selecting research problem; formulation of research projects; survey of literature.
	CO3:	Develop an understanding of formulation and types of hypothesis; collection, maintenance, storage and analysis of data.
	CO4:	Understand compilation and presentation of results, writing of manuscripts; research reports and thesis.
	CO5:	Know about various funding agencies provides financial support for research and writing research proposal for external funding.
	CO6:	Develop an understanding of computer and informatics including word processing, excel, power point presentation etc.
	CO7:	Explain and understand principal and working procedure of various lab instruments.
	CO8:	Able to writing a review article on topic of interest
Credits	03 Theo	ory periods of one hour per week over a semester