Program Outcomes	Program Outcome of M.Sc. Mathematics
P01.	Knowledge of advanced methods of mathematics, including some from the research frontier of the field, and expert knowledge of a well-defined field of study, based on recent trends of research in mathematics
P02.	Analysing, Mathematical Modelling and logical arguments power will be developed with mathematical concepts.
РО3.	Communicate mathematical ideas with clarity and coherence, both written and verbally.
P04.	Perform research in conjunction with others as well as individually.
P05.	Enhance the job prospect
Program Specific Outcomes	PSOs of M.Sc. Mathematics Program
P01.	After completing the program student will be able to write Dissertation/Project work in Mathematics
PO2.	They will be able to write computer program for solve real world problems.

Course Outcomes	Analysis - I (MATH-521)
	CO 01: Understand thing of Uncountability of the reals. Metric spaces, compact and
	connected sets, separability, equivalent metrics.
	CO 02: Understanding of Subsequences. Cauchy sequences. Upper and lower limits of
	a sequence of real numbers. Series, absolute convergence and rearrangement of series.
	CO 03: Idea of Limits of functions (in metric spaces) and continuity.
	CO 04: Understanding the concept of Continuous functions on compact domains and
	on connected domains.
	CO 05: Knowledge about Discontinuities and monotonic functions on intervals.
	CO 06: Integration of vector-valued functions and rectifiable curves., Uniform
	convergence of sequences and series of functions, its relation to continuity,
	integrability and equicontinuity.
	CO 07: Application of Stone-Weierstrass theorem.
Credits	LTP:3/1/0
Course Outcomes	Complex Analysis (MATH-522)
	CO 01: Effectively write mathematical solutions in a clear and concise manner.
	CO 02: Effectively locate and use the information needed to prove theorems and
	establish mathematical results.
	CO 03: Demonstrate the ability to integrate knowledge and ideas of complex
	differentiation and complex integration in a coherent and meaningful manner and
	use appropriate techniques for solving related problems and for establishing
	theoretical results.
	CO 04: Demonstrate ability to think critically by proving mathematical conjectures
	and establishing theorems from complex analysis.
	CO 05: In addition, students will be able to: Operate with complex numbers, use the
	complex derivatives function, use and operate analytic functions, demonstrate
	complex derivatives function, use and operate analytic functions, demonstrate

	CO 06: Students apply Cauchy's theorem and Cauchy integral formula in practical
	problem.
	CO 07: Manipulate and use power series, understand residues and their use in
	integration.
	CO 08: Demonstrate the understanding of conformal mappings.
Credits	LTP:3/1/0
Course Outcomes	Algebra (MATH-523)
	CO 01: Student will get the knowledge about the groups, permutation group.
	CO 02: Student will get the knowledge about Jordan Holder series, nilpotent group,
	simple group, solvable group.
	CO 03: Students will get the knowledge about the rings, integral domain, polynomial
	ring
	CO 04: Students will apply their knowledge in the area principal ideal domain,
	unique factorization domain.
	CO 05: Students will get the knowledge about the irreducible criteria about
	polynomial ring.
	CO 06: Students will get the knowledge about field, prime field, sun field, algebraic
	extension, finite field extension
	CO 07: Student will get the knowledge about normal extension, inseparable
	extension
	CO 08: Students will get the knowledge about the field module, submodule, linear
	operator, characteristic polynomial, minimal polynomial.
Credits	LTP:3/1/0
<u> </u>	

Course Outcomes Numerical Methods (MATH-524)	
Course Outcomes	Numerical Methods (MATH-524)
	CO 01. They will be able to find roots of linear and nonlinear algebraic and
	CO 01: They will be able to find roots of linear and nonlinear algebraic and
	transcendental equations using different numerical methods
	CO 02: They get knowledge about solution of a system of non-linear equations by
	fixed point method and Newton-Raphson methods.
	CO 03: Analyze the rate and order of Convergence of different numerical methods.
	CO 04: Application of of differential equations in real life and solution of initial-value
	problem by single and multistep methods such as Taylor series, Euler's, Euler's
	modified, Picard, Runge-Kutta, Predictor-Corrector, Milne-Thomson.
	CO 05: Application of differential equations in Science and Technology. Solution of
	linear and non-linear boundary-value problems, Rayleigh-Ritz, Galerkin, Shooting
	methods, Solution of Characteristics value problems,
	CO 06: Application and solution of Laplace and Poisson equations in two variables by
	five point formula, Solution of Laplace equation in two variables by ADI method,
	Solution of mixed boundary value problem,
	CO 07: Solution of problems using Computer Algorithm for elliptic equation in three
	variables, Solution of parabolic partial differential equation in two variables by
	explicit and implicit methods.
	CO 08: Idea of solution of parabolic equation in three variables by different method
	such as ADE and ADI methods.
	CO 09: Knowledge about Solution of hyperbolic equation in two variables by explicit
	and implicit methods and algorithm for hyperbolic equation in three variables,
	CO 10: Idea about Stability of finite difference schemes for parabolic and hyperbolic
	equations
Credits	LTP:3/0/1
Course Outcomes	Ordinary Differential Equations (MATH-525)
	CO 01: Understand the concepts of real function theory.
	CO 02: Study of existence and uniqueness theorem for higher-order equations,

LTP:3/1/0
CO 05: Student will analyze the convergence and divergence in measure.
functions.
CO 04: They will understand the integration and differentiation of measurable
CO 03: Student will analyze the measurable theory and apply in practical problems
theorem and also gain the basic idea of matric space.
CO 02: They will understand the inverse function theorem, implicit function
another space.
CO 01: Student will understand about linear transformation from one space to
Analysis - II (MATH-531)
LTP:3/1/0
L TTD•9 /1 /0
and Periodic Solutions.
CO 09: Understand the Critical Points and Paths of Nonlinear Systems. Limit Cycles
Critical Points and paths of Linear Systems.
CO 08: Application to Sturm Liouville System, Phase Plane, Paths, and Critical Points.
CO 07: Study of First and Second comparison theorems.
to Picone, Conditions for Oscillatory or non-oscillatory solution.
CO 06: Analyze separation theorem, Sturm's fundamental theorem Modification due
function in orthonormal form.
CO 05: Knowledge about Orthogonality of Characteristic Functions and expansion of
CO 04: Application of Sturm-Liouville Problems.
Linear System.

11051	an Outcomes, 110gram Speeme Outcomes, Course Outcomes
	CO 01: Student will understand about basic concepts, algorithm and flow chart in C
	language.
	CO 02: They will apply different loops in practical problems.
	CO 03: They will apply arithmetic expression in different problems.
	CO 04: Student will understand about data type and functions.
	CO 05: They will apply logical expressions and control statements in practical problems
	CO 06: Student will apply bit level operation and application of pointer.
Credits	LTP:3/0/1
Course Outcomes	Curves and Surfaces (MATH - 535)
	CO 01: Students will be able to understand basic concept of curves in R^2 and R^3 .
	CO 02: They will apply arc length, reparametrization, Curvature, torsion and Serret-
	Frenet formula in real life problems.
	CO 03: They will understand about first and second fundamental theorems.
	CO 04: Student will understand about Geodesics curvature and Gauss's theorem
	CO 05: They will apply the knowledge to calculate area, volume
	integrals, and surface area.
Credits	LTP:3/1/0
Course Outcomes	Partial Differential Equations (MATH-551)
	CO 01: Understand the Classification of Second order Partial Differential Equations.
	CO 02: Conversion of PDE in Canonical forms: Canonical form for Hyperbolic
	equation, Canonical form for Parabolic equation, Canonical form for elliptic equation.
	CO 03: Analysis and Derivation of Laplace Equation, Derivation of Poisson equation.
	CO 04: Application of Boundary Value Problems. Some important mathematical
	CO 04: Application of Boundary Value Problems. Some important mathematical tools. Properties of Harmonic Functions.

pplication and solution of one dimensional, and two-dimensional Heat and ation by variable separation method. pplication and Analysis of Initial Value Problem; D'Alemberts Solution. String – Variables Separable solution, Forced Vibrations – Solution of genous Equation. tudy of Boundary and Initial Value problem for one and two-dimensional ation in Cylindrical Coordinates and Spherical Polar Coordinates.
pplication and Analysis of Initial Value Problem; D'Alemberts Solution. String – Variables Separable solution, Forced Vibrations – Solution of genous Equation. tudy of Boundary and Initial Value problem for one and two-dimensional ation in Cylindrical Coordinates and Spherical Polar Coordinates.
String – Variables Separable solution, Forced Vibrations – Solution of genous Equation. tudy of Boundary and Initial Value problem for one and two-dimensional ation in Cylindrical Coordinates and Spherical Polar Coordinates.
genous Equation. tudy of Boundary and Initial Value problem for one and two-dimensional ation in Cylindrical Coordinates and Spherical Polar Coordinates.
tudy of Boundary and Initial Value problem for one and two-dimensional ation in Cylindrical Coordinates and Spherical Polar Coordinates.
ation in Cylindrical Coordinates and Spherical Polar Coordinates.
/0
tical Statistics (MATH-552)
fectively express themselves in statistical terms either in written or oral
monstrate ability to integrate knowledge and idea in a coherent and
Il manner by implementing the basic regression analysis theory in solving
d" problems.
cate and use information from the output of statistical software to draw
1.
ork effectively with others in class discussions or small group projects.
understand the mathematical theory behind common methods of statistical
such as point estimation, confidence intervals, and hypothesis testing.
apply statistical methods learned to help solve interesting and realistic
across a variety of fields.
roductory probability and Bayes' theorem
screte random variables and their probability distributions
ntinuous random variables and their probability distributions
altivariate random variables and their probability distributions
mpling distributions and the central limit theorem Interval estimation;

Program Outcomes, Program Specific Outcomes, Course Outcomes	
Course Outcomes	Research Methodology (MATH -599)
	CO 01: Student will understand about ethics of research.
	CO 02: They will understand how to collect data or literatures.
	CO 03: They will apply different statistical tools in their research work.
	CO 04: Student will understand about citation of work and plagiarism.
	CO 05: Student will understand about different experimental design such as CRD,
	RBD and Latin square design.
	CO 06: Student will apply their knowledge to write the synopsis, research paper and
	thesis.
0	
Credits	LTP:3/0/0
Course Outcomes	Discrete mathematics (MATH-533)
Course Outcomes	CO 01: Student will understand about basic concept of set theory and relations.
	CO 02: They will apply the knowledge in practical problems such as AND, OR,
	NOR gates etc.
	CO 03: Student will be able to understand about permutation, combination.
	CO 04: They will apply Pigeonhole principle in real life practical problems,
	CO 05: Student will understand about graph theory and apply this knowledge to
	solve practical problems.
	CO 06: They will understand about Boolean algebra and apply the circuit theory in
	solution of complicated problems.
	CO 07: They will get knowledge about trees and application in real life problems.
Credits	LTP:3/1/0
Cleuis	
Course Outcomes	TOPOLOGY (MATH - 561)
	CO 01: Student will understand about basic concept of set theory and metric space.
	CO 02: They will understand about Topological Spaces, examples and its
	application.

3	am Outcomes, i rogram specific Outcomes, Course Outcomes
	CO 03: Student will anlyze different type space such as compact, connected,
	Housdorff, and separated space
	CO 04: They will understand different type theorems such as Urysohn's lemma,
	Urysohn imbedding, Tietze's extension, and Stone-Cech compactification theorems
	etc.
	CO 05: They will understand about different shapes.
One dita	
Credits	LTP:3/1/0
Course Outcomes	Functional Analysis (MATH-563)
	CO 01: Student will understand about Normed linear space and Banach space and its
	applications.
	CO 02: they will analyse Hahn-Banach, Banach-Steinhaus, Open Mapping and
	Closed Graph Theorems.
	CO 03: Student understand about dual spaces and reflexivity, weak and weak star
	convergence.
	CO 04: They will be able to understand different type operators such as adjoint
	operator, self-adjoint, normal and unitary operators on Banach and Hilbert spaces.
Credits	LTP:3/1/0
Course Outcomes	Number theory-I (MATH- 562)
	CO-01: Students will get the knowledge about divisibility, g.c.d. the fundamental
	theorem of arithmetic.
	CO-02: Students will gain the knowledge in the field Chinese remainder theorem,
	Fermat's theorem, and Wilson's theorem.
	CO-03: students will check their knowledge in the field residue class, Euler's
	theorem.
	CO-04-students will gain the knowledge in the field quadratics residue, Legendre
	symbol, jacobi symbol, Diophantine equation.

Credits	LTP:3/1/0
Course Outcomes	Difference Equation (MATH-564)
	CO 01: Students will be able to apply Euler's summation formula and Bernoulli
	polynomials in practical problems.
	CO 02: Students understand about linear and non-linear difference equations and be
	able to solve.
	CO 03: Students will be able to analyze the stability of linear and Nonlinear system.
	CO 04: Students will understand Volterra summation equation and Fredholm
	summation equation.
	CO 05: Students apply Z-Transform as a mathematical tool for solving difference
	equation.
Credits	LTP:3/1/0
Course Outcomes	Coding Theory (MATH-565)
	CO 01: They understand about linear code and encoding and decoding techniques.
	CO 02: They will apply this technique to remove noisy data.
	CO 03: Students will be able to apply this technique in security analysis.
	CO 04: They understand about Hamming code, perfect code and Latin
	CO 04: They understand about Hamming code, perfect code and Latin square
Credits	
Credits	square
Credits Course Outcomes	square
	square LTP:3/1/0
	square LTP:3/1/0 Non-Commutative Rings (MATH-566)
	square LTP:3/1/0 Non-Commutative Rings (MATH-566) CO 01: Student will understand basic knowledge about rings, module amd
	square LTP:3/1/0 Non-Commutative Rings (MATH-566) CO 01: Student will understand basic knowledge about rings, module amd submodule theory.
	square LTP:3/1/0 Non-Commutative Rings (MATH-566) CO 01: Student will understand basic knowledge about rings, module amd submodule theory. CO 02: Student will analyze direct sums and direct products of rings and modules
	square LTP:3/1/0 Non-Commutative Rings (MATH-566) CO 01: Student will understand basic knowledge about rings, module amd submodule theory. CO 02: Student will analyze direct sums and direct products of rings and modules and its application.

Credits	LTP:3/1/0
Course Outcomes	Calculus of Variations and Analytical Mechanics (MATH-567)
	CO 01: Students understand about Euler's equation and its application.
	CO 02: They apply Generalized coordinates, Holonomic and Non-Holonomic systems in physical problems.
	CO 03: Students understand about Lagrange's equations of first and second kind and
	Choice of Lagrangian.
	CO 04: Students will be able to apply Lagrange brackets and Poisson brackets under
	canonical transformations.
Credits	LTP:3/1/0
Course Outcomes	Operations Research (MATH568)
	CO01: Understand the basic definitions and the properties of Hyperplane and
	hyperspheres, convex sets convex, concave functions and their properties.
	CO02: Formulate the problem in Mathematical form and solve the Linea
	programming problem using different existing method.
	CO03: Mathematically formulate and solve Transportation and Assignment problems
	CO04: Formulate mathematical model in Goal Programming and be able to solv
	using existing method.
	CO05: Understand the concept of Duality and be able to solve by Dual simple
	coos. Understand the concept of Duanty and be able to solve by Duar simple.
	algorithm.
	algorithm.
	algorithm. CO06: Apply different existing method to solve integer programming problem.

Course Outcomes, Nonlinear Ontimization (MATH571)	
	Nonlinear Optimization (MATH571)
	CO01: Understand convex hulls, Closure and interior of a set, Separation and support
	of sets, Separation theorems of convex sets, convex cones and polarity, polyhedral
	sets, Extreme points and extreme directions
	CO02: Knowledge of definitions and Basic properties of convex functions generalized
	convex functions, Differentiable convex functions, twice differentiable convex
	functions.
	CO03: Able to find Minima and Maxima of Convex functions.
	CO04: Apply Fritz Johnand Karush-Kuhn-Tucker optimality conditions for solving
	non linear programming problem.
	CO05: Able to solve Linear quadratic programs.
Credits	LTP:3/1/0
Course Outcomes	Number theory-II (MATH-572)
	CO-01: Students will gain the knowledge in the field Farey sequence, continued
t	fraction, pell's equation, Minkowski's inequality.
	CO-02: Students will check their knowledge in the field of the prime number
1	theorem, Euler summation formula, and Abel's identity.
	CO-03: Students will get the knowledge about the practical problems related to
	Fermat's theorem, Wilsion's theorem, Chinese remainder theorem.
Course Outcomes	Non Commutative Rings(MATH-566):
	CO 01: Students get knowledge about basic concepts of non commutative rings.
	CO 02: They understand about modules and submodules.
	CO 03: They understand about Artinian rings, Wedderburn-Artin theorem.
	CO 04: Students will understand basic concept of injective hulls.
Credits	LTP:3/1/0

Course Outcomes	Commutative Algebra (MATH-573)
	CO 01: They understand about prime, semi-prime, primary, maximal in ring theory
	CO 02: Student will analyze Chinese reminder theorem for solution algebraic
	equation and also in factorization of numbers.
	CO 03: They will understand about Chain conditions, maximal and minimal conditions in noetherin ring theory.
	CO 04: Student understand about applications to principal ideal domains and
	Artinian rings
Course Outcomes	Algebraic Topology (Math-574)
	CO 01: Student will understand about definition and some examples of homotopies
	and its applications.
	CO 02: They will analyze fundamental group of a space and the effect of a
	continuous mapping on fundamental group.
	CO 03: Student will understand about projection of space and torus,
	homomorphisms and automorphisms of covering spaces.
	CO 04: They will understand about Brower fixed-point theorem in two dimensions.
Credits	LTP:3/1/0
Course Outcomes	Fuzzy set theory and application (MATH575)
	CO01: Understand basic definitions of fuzzy set and their properties
	CO02: They will know about Fuzzy numbers and relation between fuzzy number and
	a convex fuzzy set Operations on fuzzy numbers in terms of its membership functions
	as piecewise defined functions, fuzzy cardinality of a fuzzy set using fuzzy numbers,
	arithmetic operators on fuzzy numbers
	CO03: Able to solve fuzzy equations, equation $A+X = B$, equation $A.X = B$
	CO04: Know about Crisp and fuzzy relations

Course Outcomes	Stochastic Processes (MATH576)
	CO01: Have a reinforced knowledge of basic probability theory and effectively
	express themselves in statistical terms either in written or oral.
	CO02: Understand and apply sequences of random variables
	CO03: Have a firm understanding of the central limit theorem and its applications
	CO04: Understand the basic concepts of continuous random processes
	CO05: Apply the knowledge of Poisson Process and Marcov chains in practical situations
	CO06: Apply the concept of Random walk-in real-world problems
Credits	LTP:3/1/0
Course Outcomes	Applied Functional Analysis (MATH - 577)
	CO 01: Student will understand about basic properties of Hilbert space and its
	applications.
	CO 02: They will analyze Minkowski functional, Separation Theorem and Kuhn-
	Tucker Theorems.
	CO 03: Student will be able to understand Spectral theory of operators and compact
	operations.
	CO 04: Student will understand L2 spaces over Hilbert spaces and its properties.
Course Outcomes	Fluid Mechanics (MATH- 578)
	CO 01: Students will understand the basic concept of fluid mechanics.
	CO 02: They apply Euler's equation of motion, Bernoulli's equation in real
	situations.
	CO 03: They get idea about velocity potential and stream functions.

	CO 04: They understand about Milne Thomson Circle Theorem, and Blasius
	Theorem.
Credits	LTP:3/1/0
Course Outcomes	Integral equation and transformation (MATH-554)
	CO 01: Student will learn the classification of linear integral equation.
	CO 02: Student will be able to compute resolvent kernel.
	CO 03: Student will be able to solve the integral equation through different
	techniques.